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Abstract

In this thesis, we studied the effect of MHD on accelerated flows of a
viscoelastic fluid with the fractional Burgers’ model. The velocity field of
the flow is described by a fractional partial differential equation. By using
Fourier sine transform and Laplace transform, an exact solutions for the
velocity distribution are obtained for the following two problems: flow
induced by constantly accelerating plate, and flow induced by variable
accelerated plate. These solutions, presented under integral and series forms
in terms of the generalized Mittag-Leffler function, are presented as the sum
of two terms. The first terms represent the velocity field corresponding to a
Newtonian fluid, and the second terms give the non-Newtonian
contributions to the general solutions. The similar solutions for second grad,
Maxwell and Oldroyd-B fluids with fractional derivatives as well as those
for the ordinary models are obtained as the limiting cases of our solutions.
Moreover, in the special cases when « =g =1, as it was to be expected, our
solutions tend to the similar solutions for an ordinary Burgers’ fluid. While
the MATHEMATICA package is used to draw the figures velocity

components in the plane.
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Introduction

Introduction

A fluid is that state of matter which capable of changing shape
and is capable of flowing. Both gases and liquids are classified as
fluid, each fluid characterized by an equation that relates stress to rate
of strain, known as ‘“State Equation”. And the number of fluids
engineering applications is enormous: breathing, blood flow,
swimming, pumps, fans, turbines, airplanes, ships, pipes... etc. When
you think about it, almost every thing on this planet rather is a fluid or
moves with respect to a fluid.

Fluid mechanics is considered a branch of applied mathematics
which deal with behavior of fluids either in motion (fluid dynamics)
or at rest (fluid statics).

Within the past fifty years, many problems dealing with the flow
of Newtonian and non-Newtonian fluids through porous channels
have been studied by engineers and mathematicians. The analysis of
such flows finds important applications in engineering practice,
particularly in chemical industries, investigations of such fluids are
desirable. A number of industrially important fluids including molten
plastics, polymers, pulps, foods and fossil fuels, which may saturate
in underground beds, display non-Newtonian behavior. Examples, of
such fluids, second grade fluid is the simplest subclass for which one
can hope to gain an analytic solution.The MHD phenomenon is
characterized by an interaction between the hydrodynamic and

boundary layer electromagnetic field.

I
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Introduction

The study of MHD flow in a channel also has application in many
devices like MHD power generators, MHD pumps, accelerators, etc.
As to the history of fractional calculus, already in 1965 L’Hospital
raised the question as to meaning of d"y/dx" =1/2, that is “what if n is
fractional?”. “This is an apparent paradox from which, one day,
useful consequences will be drawn”, Leibniz replied, together with
“d¥2x will be equal tox+/dx:x”. S. F. Lacroix was the first to
mention in some two pages a derivative of arbitrary order in a 700
page text book of 1819.

Thus fory = x*,a e R, , he showed that

d¥?y  T(a+1) vz
dx¥? T'(a+1/2)

In particular he had (d/dx)**x = 2,/x/z (the same result as by the

present day Riemann-Liouville definition below). J. B. J. Fourier,

who in 1822 derived an integral representation for f(x),
1
f(x) :E;!; f(a)da 5[005 p(X—a)dp,
obtained (formally) the derivative version

d v
dx’

£ (%) =%If(a)daJ.pvcos{p(x—a)+v7ﬂ}dp,

Where “the number v will be regarded as any quantity whatever,

positive or negative”.

I
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Introduction

It is usually claimed that Abel resolved in 1823 the integral equation

arising from the brachistochrone problem, namely

X

1 g(u) _
F(a)-([(x—u)l“ du=f(x), O<a<l

With the solution

1 dF fW g,

900 = T(1-a)dx o (x=u)*

As J. Lutzen first showed, Abel never solved the problem by
fractional calculus but merely showed how the solution, found by
other means, could be written as a fractional derivative. Lutzen also
briefly summarized what Abel actually did. Liouville, however, did
solve the integral equation in 1832. Fractional calculus has developed
especially intensively since 1974 when the first international
conference in the field took place. It was organized by Betram Ross
and took place at the university of New Haven, Connecticut in 1974.
It had an exceptional turnout of 94 mathematicians; the proceedings
contain 26 papers by the experts of the time. It was followed by the
conferences conducted by Adam Mc Bride and Garry Roach
(University of Strathclyde, Glasgow, Scotland) of 1989, by Katsuyuki
Nishimoto (Nihon University, Tokyo, Japan) of 1989, and by Peter
Rusev, lvan Dimovski and Virginia Kiryakova (Varna, Bulgaria) of
1996. In the period 1975 to the present, about 600 papers have been

published relating to fractional calculus [9].

1]
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Introduction

Understanding non- Newtonian fluid flows behavior becomes
increasingly important as the application of non-Newtonian fluids
perpetuates through various industries, Including polymer processing
and electronic packaging , paints , oils liquid polymers, glycerin ,
chemical , geophysics , biorheology. However, there is no model
which can alone predict the behaviors of all non-Newtonian fluids.
Amongst the existing model, rate type models have special
importance and many researchers are using equations of motion of
Maxwell and Oldroyd-fluid flows. M. Khan, S. Hyder Ali, Haitao Qi.
(2007) [10] construct the exact solutions for the accelerated flows of a
generalized Oldroyd-B fluid. The fractional calculus approach is used
in the constitutive relationship of a viscoelastic fluid. The velocity
field and the adequate tangential stress that is induced by the flow due
to constantly accelerating plate and flow due to variable accelerating
plate are determined by means of discrete Laplace transform. C.
Fetecau,T. Hayat and M.Khan. (2008) [5] concerned with the study of
unsteady flow of an Oldroyed-B fluid produced by a suddenly moved
plane wall between two side walls perpendicular to the plane are
established by means of the Fourier sine transforms. M. Khan, S.
Huder Ali, Haitao Qi. (2009) [11] Studied the accelerated flows for a
viscoelastic fluid governed by the fractional Burgers’ model. The
velocity field of the flow is described by a fractional partial
differential equation. Liancun Zheng, Yaqging Liu, Xinxin Zhang.
(2011) [13] research for the magnetohydrodynamic (MHD) flow of

v
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Introduction

an incompressible generalized Oldroyd-B fluid due to an infinite
accelerating plate. The motion of the fluid is produced by the infinite
plate, which at time t =0"begins to slide in its plane with a velocity
At. The solutions are established by means of Fourier sine and
Laplace transforms.

This thesis contains three chapters:-

In chapter one, we introduced an elementary concepts and
basic definitions that we will use in our work.

Chapter two contains the statement of the problem of the flow
induced by a constant accelerated plate, the solution of the
problem, and results and discussion of the problem. Laplace
transformation and Fourier transformation are used to solve
the problem.

Chapter three contains the statement of the problem of the
flow induced by a variable accelerated plate, the solution of
the problem, and results and discussion of the problem.
Laplace transformation and Fourier transformation are used

to solve the problem.

\
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Chapter One

Chapter One
Basic Definitions and Elementary Concepts

Introduction

In this chapter, we give some basic definitions and
elementary concepts that we will be  used in our work latter

on.

(1.1)Fluid mechanics:[14]

The subject of fluid mechanics deals with the behavior of

fluids when subjected to a system of forces. The subject can be
divided in to three fields:

I-Statics: which  deals with the fluid elements which
are at rest relative to each other.
II-kinematics: This deals with the effect of motion. i.e.

translation, rotation and deformation on the fluid elements.

[11-Dynamics: This deals with the effect of applied

forces on fluid elements.

Fluid (1.1.1):]19]

It is defined as a substance that continuous to deform

whensubjected:to.a shear stress, no matter how small.

1
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Chapter One

Mass density (1.1.2) : [14, 20]

It is defined as mass per unit volume of fluid, and
denoted by . Mathematically

kg)

a-1

Where,  p =density
m = mass

v = volume

Pressure (1.1.3): [14, 20]

The pressure, denoted by p, is a normal compressive force per

unit area.

Force kg)
Area m.s?

a-2)

Where force equals mass times acceleration.

Shear stress (1.1.4):]15]

It is defined as the force per unit area, mathematically:

T = — @a—33)

Where, T =shear stress
F =the Force applied
A = the cross-sectional area of material with area parallel to

the applied Force vector.

2
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Chapter One

Shear strain (1.1.5): [15]

Also known as shear a deformation of solid body is

displaced parallel planes in the body; quantitatively it is
the displacement of any plane relative to a second plane
divided by the perpendicular distance between planes

the force causing such deformation.

Newton's law of viscosity(1.1.6): [1, 3]

The Newton's law of viscosity states that the

shear stress (T) fluid element on a layer as directly is

proportional to the shear strain or gradient:

T oc —— @—4)

This may be written as:

T = /Jd_u a—5)
dy

Where 4£¢ a constant of proportionality is called "dynamic

viscosity ".

The dimensions may be found as follows:

T stress _ Force 8 Distance

= = = l1-6
du/dy velocity/Distance  Area  velocity ( )

y7i

3
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Chapter One

Viscosity (1.1.7): [14, 20, 2]

Viscosity is the resistance of a fluid to motion- it's internal

friction.
A fluid in a static state is by definition unable to resist even the
slightness amount of shear stress. Application of shear stress

results in a continual and permanent distortion known as flow.

Dynamic viscosity (1.1.8): [2]

A dynamic viscosity «¢ is defined as the tangential

force required per unit area to sustain a unit velocity gradient.

du

Where z is the sheer stress (force per unit area) 3—” is called a
y

velocity gradient and «¢is the coefficient of dynamic

viscosity, or simply called viscosity.

Kinematics viscosity (1.1.9): [2]

Is defined as the ratio of dynamic viscosity to mass

density and denoted by o . Mathematically

e =%('?) 1—8)

Where | standing for length.

4
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Chapter One

Classification of fluids (1.1.10): [14]
The fluid may be classified into the following types

depending upon the presence of viscosity.

Ideal fluid (1.1.10.1) (In viscid)

Such a fluid, will not offer any resistance to

displacement of surface in contact (i.e. T = 0) where T is the

shear stress.

Real fluid(1.1.10.2)

Such fluid will always resist displacement.

Newtonian fluid (1.1.10.3)

A real fluid in which shear stress is directly

proportional to the rate of shear strain. i.e. (obeys the

Newton’s law of viscosity).

Non-Newtonian fluid (1.1.10.4)

A real fluid in which shear stress is not directly

proportional to the rate of shear strain (non linear relation).i.e.

dose not obey the Newton’s law of viscosity.

5
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Chapter One

(1.1.11)Reynolds number: [14, 19]

The Reynolds number, denoted by Re, is dimensionless

and represents the ratio of inertia force to the viscous force and

given by:

_Vvdp \Vvd
y7; O

Re a—-9

Where d is standing for distance. The use of Reynolds
number is to determine the nature of flow whether is laminar
(Re < 2000) or turbulent (Re > 4000).

Types of fluid flow(1.1.12): [14]

A fluid flow consists of flow of number of small

particles grouped together. These particles may group
themselves in variety of ways and type of flow depends on
how these groups behave. The following are important types
of fluid flow:

I- Steady and Unsteady Flow: a flow is considered to be
steady when conditions at any point in the fluid flow do not
change with time i.e.

o/
ot

and also the properties do not change with time; i.e.

6p_o o0

ot ot
Otherwise the flow is unsteady.

6
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Chapter One

II- Compressible and Incompressible Flow: a flow is
considered to be compressible if the mass density of fluid p
changes from point to point, or p # constant. In case of
incompressible flow the change of mass density in the fluid is
neglected or density is assumed to be constant.

I11- Laminar and Turbulent Flow: Laminar flow in which
fluid particles move along smooth paths in laminar or layers,
with one layer gliding smoothly over an adjacent layer and it
occurs for values of Reynold's number from 0 to 2000. And we
say that the flow is turbulent flow if the fluid particles move in
very lrregular parts and when Reynold's number is greater than
4000, and we say that the flow is translation if the values of
Reynolds number between 2000 and 4000.

Continuity equation(1.1.13): [21]

The continuity equation simply expresses the law of

conservation of mass (the mass per unit time entering the tube
must flow out at same rate) mathematical form:

6p+u6p+vap+wap+p(au+ﬂ+@)=o 1-10)
ot OX oy oz oXx oy oz

Where,p is density and (u, v, w) are the velocity

components in (X, Y, z) direction, respectively.

7
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Chapter One

If the fluid is compressible, then p is constant, and the

continuity equation may be written as:

8_u+@+@:0 1-11)
oXx oy oz
In 2-dimension:
a_u+@ =0 @-12)
oX oy
In 1-dimension:
8_u =0 (1-13
OoX

Motion equations (1.1.14): [6]

It is a system of partial differential equations that describe

the fluid motion. The general technique for obtaining the
equations governing fluid motion is to consider a small control
volume through which the fluid moves and require that mass
and energy are conserved , and that the rate of change of the
two components of linear momentum are equal to the

corresponding components of the applied force.

8
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Chapter One

The Navier-stokes equation(1.1.15):[21]

The system of partial differential equations that describe

the fluid motion is called the Navier- Stokes equations. The
general technique for obtaining the equations governing fluid
motion is to consider a small control volume through which
the fluid moves, and required that mass and energy are
conserved, and that the rate of change of the two components
of linear momentum are equal to the corresponding
components of the applied force. The Navier-Stokes equations

for incompressible fluid are:

ou ou  ou ou 1 0p o°u  o°u d“u
—4+U—+V—+W—=X ———+ > > >)
ot OX 0z p OX OX oy 0z

ov ov 1 0p o°v  0°v 0%v
—+uU—+V—F+W— =Y ———+ > > 5)
ot OX 0z p oy ox® oy° oz

oW y oW  Ow N ow__ 1l0p o'w  o°w azw)
ot Ox oz p oz ox?>  oy* ozt

Where (u, v, w) are the velocity components in the X, y and z
directions respectively, (X, Y, Z) are the body force in the x, y
and z directions respectively, pis the mass density, p is the

pressure and v is the kinematic velocity.

9
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Chapter One

(1.2)Laplace transform methods: [4]

The Laplace transformation is a powerful method for
solving linear differential equations (partial or ordinary)
arising in engineering mathematics. It is consists essentially of
three steps. In the first step, the given partial differential
equation is transformed into an ordinary differential equation
(subsidiary equation). Then the resulting equation is solved by
usual methods. Finally, the solution of the subsidiary equation
is transformed back so that it becomes the required solution of
the original differential equation. In the case of ordinary
differential equation, the Laplace transformation reduces the
problem of solving a differential equation to an algebraic
problem. Another advantage is that it takes care of initial
conditions so that in initial value problems the determination
of a general solution is avoided. Similarly, if we apply the
Laplace transformation to a non-homogeneous equation, we
obtain the solution directly, that is, without first solving the

corresponding homogeneous equation.

Laplace and inverse transform (1.2.1):

Let f(t) be a given function which is defined for all
positive values of t. We multiply f(t) by exp(-st) and integrate

with respect to t from zero to infinity.

10
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Chapter One

Then, if resulting integral exists, it is a function of s, say, F(s):
F(s) = j exp (—st) f (1) dt.
0

The function F(s) is called the Laplace transform of the

original function f(t), and will be denoted by L(f). Thus
F(s)=L(fT) :Texp(—st) f(t)dt a-14)

The described operation on f(t) is called the Laplace transformation.
Furthermore the original function f(t) in (1-14) is called the inverse
transform or inverse of F(s)and will be denoted by L*(F); that is, we
shall write

f(t)=L"(F).

Convolution theorem(1.2.2) : [16]

The Laplace transform of the convolution

fO)*g@)=[ft—2)g(x)dzr = [ F(2)g(t—7) (1-15)

of the two function f (t) and g(t), which are equal to zero for t>0, is

equal to the product of the Laplace transform of those function :

LL{f () > g(t);s}=F(s)G(s), 1-16)
Under the assumption that both F(s) and G(s) exist. We will

use the property (1-16) for the evaluation of the Laplace

transform of the Riemann-Liouville fractional integral.

11
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Chapter One

Laplace transform of the fractional derivative(1.2.3) :

[16]

Another useful property which we need is the formula

for the Laplace transform of the derivative of an integer order

n of the function f(t);

L{f"(t);s}=s"F(s) —nis”‘k‘lf ®)(0) = s"F(s) —nisk f O D0), @1-17)

This can be obtained from the definition (1-14) by integrating
by parts under the assumption that the corresponding integrals

exist.

(1.3) Mittag-L effler function: [16]

The exponential function, exp(z), plays a very important

role in the theory of integer-order differential equations. Its

one-parameter generalization, the function which is denoted by

k

> Z
E.(2) =ng : (1—18)

was introduced by G. M. Mittag-Leffler and studied also by A.

Wiman.

12
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Chapter One

Definition and relation to some other functions(1.3.1)

A two-parameter function of the mittag-Leffler type is

defined by the series expansion

o0

E
SO Sr
It follows from the definition (1-19) that

(¢>0,5>0) (1-19)

- = 7
11() Zr(k 1)_§kl = xp(z) (1-20)
& 1 S 1& Y ep(n)- B
E“(Z)_gr(mz) kz_;‘(k+1) zkz_;‘(k+1)!_ 7 (1-2)
o S 1E M ep(n)-1-2 B
E1'3(Z)_§r(k+3)_§(k+2)!_z%(mz)!_ 2 1-22)

and in general

m—2 5k

E,n(2) = I ep() - %}. (1-23)

(1.4) Gamma function: [16]

The gamma function 1'(z) is defined by the integral

I'(z) = Texp (-t t>*dt, (1—24)

Which converges in the right half of the complex plane
Re(z) > 0.
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Indeed, we have

C(x+iy) = Texp (—t) tVdt = Texp (—t)t* " exp(iy log(t)) dt
= ]Oexp(—t)tx’1 [cos(ylog(t)) +isin(y log(t) )] dt. (1-25)

The expression in the square brackets in (1-25) is bounded for
all t; Convergence at infinity is provided by exp(-t), and

convergence at t=0 we must have x = Re(z) > 1.

(1.5) Definition of the fractional derivative: [12]

Let f be a function of class C and letu>0. Let m be the

smallest integer that exceedsu. Then the fractional derivative
of oforder 4 isdefined as
D“f(t)=D"[DVf(t)], w>0 t>0 (1—26)
(if it exists) wherev=m->0.

(1.6) Riemann-Liouville fractional derivatives: [16]

The Reamann-Liouville fractional derivative is defined

by the formula

D2 f(t) = (%)m“j(t —0)™Pf(r)dz, (M<p<m+l). 1-27)

The expression (1-28) it is the most widely known definition
of the fractional derivative; it is usually called the Riemann-

Liouville definition.

14
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(1.7)Fourier transform of the fractional derivative: [9]

The Fourier transform of a functionf: R —C, defined
by

F[f](v):fA(v):%L f(U)exp (—ivu)du, Ve, (1-28)

is a powerful tool in the analysis of operators commuting with

the translation operator. Its inverse is given by

f(X)=F'[f "(V](X) = %J‘R f~(v)exp(ixv)dv

For almost all xe®R if f and f" belong to L*(%)Two of the

basic properties of the Fourier transform are

FLEAI(v) =(@v)" f°(v), veR (1—29)

[F 1" (v) = FI(=)" £ ()](V), (1-30)

valid for sufficiently function f ; (1-29) holds if, for example,
f e L'(R)NAC"(R)
with f" eL'(®) while for (1-28) it is sufficient that fas well

asx"f(x) belong toL'(R).

15
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(1.8) Error functions: [7, 8]

The functions, denoted byerf , is define as

erfx = % _([exp(—tz)dt,
and
erfc x:i]gexp(—tz)dt, (1-31)
NEE

Is known as the complementary error function.

Properties of the error function(1.8.1)

1. Relationships:
erf x+erfcx=1, erf(-x)=—erf x,erf c(—x)=2—erfcx.
2. Relationship with normal probability function:

X

( Loyvgio Lorf X
ﬁ‘(‘;exp(—zt )dt—zerf(ﬁ).

Expansions(1.8.2)

1. Series expansions:

Z( 1)n 2n+1 2 X3 1 X5 l X7

erf x= X +
Jz & en+)nt Jn 3 25 37

_ 2 TR epX) a2
a3 F(n+§) X \/;exp(x
2

16
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2. Asymptotic expansion: For z-—, argz| < %7[ :

2 exp( 2?) & (=1)" (2n)!
erf c =
i 2 @)
2 exp(—z?) 1 3 15
~ 1— + — + ... .
Jr 2z ( 2z*  4z* 8z° )

The Repeated integrals of the error function have been

investigated by Hartree (1936) who puts

ierfc x=27Y% Erfc x i”erfcx=ji”‘1erfctdt.

(1.9) Magneto hydrodynamics [17]:
Magneto  hydrodynamics (MHD) is the branch of

continuum mechanics which deals with the motion of an
electrically conducting fluid in the presence of a magnetic

field. The subject is also some times called ‘hydrodynamics

< 3

or ‘magneto-fluid dynamics The motion of conducting
material across the magnetic lines of force creates potential
differences which, in general, cause electric currents to flow.
The magnetic fields associated with these currents modify the
magnetic field which creates them. In other words, the fluid
flow alters the electromagnetic state of the system. On the
other hand, the flow of electric current across a magnetic field
is associated with a body force, the so-called Lorentz force,
which influences the fluid flow. It is this intimate
interdependence of hydrodynamics and electrodynamics which

really-defines-and-characterizes magnetohydrodynamics.
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Chapter Twa

Flow induced by constantly accelerating plat¢

Introduction

In this chapter, the flow induced by constantly accelerating
plate is considered. It is found that the governing equations are
controlled by many dimensionless numbers. The governing
equation is solved by many Laplace and Fourier techniques. In
the end of this chapter, the velocity field analyzed through
plotting many graphing.

(2.1)Problem statement

Consideration is given to a conducting fluid permeated
by an imposed magnetic field B, which acts in the positive y-
direction. In the low-magnetic Reynolds number
approximation, the magnetic body force is represented
byoBZu.Consider an incompressible fractional Burgers’ fluid
lying over an infinitely extended plate which is situated in the
(x,z) plane. Initially, the fluid is at rest and at time t=0", the
infinite plate to slide in its own plane with a motion of the
constant acceleration A. Owing to the shear, the fluid above

the plate is gradually moved.

18
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Under these considerations, the governing equation, in the absence of

pressure gradient in the flow direction, is given by

@+ 2D + 25D2) T = v+ 4D/

y7,

P

Whereov =

o%u

2

—~ M@+ A D + A3D)u

oB’u

is the kinematics’ viscosity of the fluid and M = .

yo)

The associated initial and boundary condition are follows:

Initial condition:

u(y,0) = YD)

Boundary conditions:

u@©O,t)=At , t>0
Moreover, the natural conditions are

ou(y,t)
oy

O, y>0

u(y.t),

—>0 as y-—>oo and t>0

Have to be also satisfied. In order to solve this problem, we

shall use the Fourier sine and Laplace transforms.

(2-2)Solution of the problem:

The constitutive equations for an

burgers’ fluid are given by

T =—Pl +S,0+AD& + 22D?*)S = u(1+ A~ DF)A

incompressible fractional

(2-1

Where T is the Cauchy stress tensor,-Pl denotes the indeterminate

spherical stress, S the extra stress tensor, A=L+L" the first Rivlin-

Ericksen tensor, where L the velocity gradient,
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M the dynamic viscosity of the of the fluid, 1, and 2,(<4,) the
relaxation and retardation times, respectively, A,is the new
material parameter of the Burgers’ fluid,aandp the fractional
calculus  parameters such thato<a<pg<landD/the  upper

connected fractional derivative defined by

O O

PS=DS+v-VS—-LS—-SL",
PA=DPA+V-VA—LA—ALT (2-2)

t

In whichDPf(=0)is the fractional differentiation operator of

order p with respect to t and may be defined as [16]

1 d ¢ f(2)

ST aO(l_r)dr, 0<p=<1 (2-3)

DPLf ()] =

Here 1(.) denotes the Gamma function and

D2PS = DF(DFS), (2—-4)

The equations of motion in absence of body force can be described as
dv —
—=V-T, 2-5
PGt ( )
Where p is the density of the fluid and d/dt represents the

material time derivative.
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Since the fluid is incompressible, it can undergo only is

isochoric motion and hence

V-V =0, (2—-6)
For the following problems of unidirectional flow, the intrinsic

velocity field takes the form

vV =[u(y,1),0,0] 2-7)
Where u(y,t) is the velocity in the x-coordinates direction. For this
velocity field, the constraint of incompressibility (2-6) is
automatically satisfied, we also assume that the extra stress S depends
on y and t only. Substituting Eq. (2-7) into (2-1), (2-5) and taking
account of the initial conditions S(y,0) =6,S(y,0)=0, y>0.

I.e. the fluid being at rest up to the time t = 0. For the components of

the stress field S, we haves =S, =S, =S, =0andS =S, this

yields
dv _
Rk v
Pt
u ou au o ap Ty T,
ot ox o6y o6z X ox oy
oS
PLLESL (2-8)
ot ox oy
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The equation of motion yields the following scalar equations:
ou_ op, By
ot OX oy

Where p is the constant density of the fluid.

—oBju (2—-9)

Now, Since
ux uy uz ux Vx Wx XX Xy sz
_ T _ _
L={v, v, v,| , L=ju v, w| , S=S, S, S,
Wx Wy Wz uz Vz Wz Szx Szy Szz
And, since

\7 = [U(y,t),0,0] , A=L+ LT ,
S(y,0)=6,5(y,0)=0,S,=5,=5,=5,=0,S, =S,

yz Xy yX
Thus,
, 0 0 00 0 u, 0
L={0 0 of,U=|u, 0 0|,A=|u, 0 0|,
0 0 00 0 00
L
&y 0 0
us, 0 0 us, &
Ls=| 0 o0 0/,Ls"=| 0 0 0|,LA=| 0O 0 0
0 00 0 0 0
- ou
()" 0 OW S S
ay P XX Xy
A= 0 0 0|, (V)S=uls, 0 0|=0,
X
0 00 0
I |
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5 o u,
(V-V)A=u—|u, O
OX 0

o O O
I
o

Now, Since

S+ AZDES + A2 D2YS = pu(A+ AL DL A)

Thus,
S+ A (DfS+(V-V)S—LS—-SL")+ 3D/ (V-V)S—LS-SL")
=u(A+ 22 (D A+(V-V)A—LA—-AL")) (2-10)

DS +(V-V)S — LS —SL

S Sy O usS, 0 0] [uS, 0 0
=Df|S, O 0|+0-| 0O 0 O|-| 0O 0 O
O 0 O 0O 0O 0O 00
D7S,, —2u,S, DS, 0
= DS, 0 0 (2-11)
0 0 0
DS (DS +(V-V)S—-LS—SL")
S Sy O u,S, 0 0] [u,S,, 0 O
=D (DS, O O0[+0+ O O O|-| 0 0 O
0O 0 O 0O 00 0O 00
D¢S, —2u,S,, DZS, O
=D/ D?ZS,, 0 0 (2-12)
0 0 0
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D/ A+ (V-V)A—LA— AL

[ ou [ ou
0 u, 0 (5)200 (5)200
=Df/u, 0 O0|+0-| 0O 0 Of-| O 0 O
0 0 O 0 00 0 00
—2(8—”)2 Dfu, 0
=| D/u, 0 0 (2-13)
0 0o o0
Sy Sy 0 DS, -2u,S, DS, 0 DS, -2u,S, DS, 0
S, 0 0+4| DS, 0 0[+4Df| DS, 0 0
0 0 0 0 0 0 0 0
o
0 u 0 —2(5) Dfu, 0
=M{|u, 0 0[+4] D/u, 0 0 (2-14)
0 00 0 0 0
Hence,
ana am2a VA aYAa au
A+ A°Df +5D)S,, = u(l+ A2 Df)— (2-15)
2
A+ 47D +2;,Df)S,, 28, [47 +2; Df]%”—zzg %qu‘Sxy =2ull [%”J (2-16)
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Eliminating s, between Egs. (2-9) and (2-15) ,we arrive at the

following fractional differential equation
(1+ﬂfD“+A"‘D2“’)a—u——(1+lf‘D“+/1“D28)@+ (1+ﬂfDﬁ)i

P t 250 )y t 220 )l H 3 Uy 8)/2

— 1+ D¢ + A2D*)oB2u (2-17)

The governing equation, in the absence of pressure gradient in

the flow direction, is given by

2
A+ A“DE + A2 Df“)%”: o(L+ zgof)gy—‘j— ML+ 29D +5D* ) (2-18)

2

Where v =% is the kinematics’ viscosity of the fluid and M = oB. .

p p
The associated initial and boundary condition are follows:
Initial condition:
u(y,O):M:O’ y>0 (2-19)

ot

Boundary conditions:
u@Ot)=At , t>0 (2—20)
Moreover, the natural conditions are
u(y,t) pu%,t) —0 as y—oo and t>0 (2-21)

Have to be also satisfied. In order to solve this problem, we

shall use the Fourier sine and Laplace transforms.
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Employing the non-dimensional quantities

u A A? A A?
U =, = _ ]/3 , :t _— 1/3 , = _— ]/3 ,
A 1Y T =t R =)
A A? A A?

Ay =2(5)" and & = A (7" (2-22)

Egs. (2-18) - (2-21) in dimensionless form are

ana a N 2a aU VA aY aZU ama a N 2a
L+ 2D + 2D) = = (1+ D, )8772 ~M(L+ADf + DX (2-23)
2
U(n,O)zaUa(Z’o) 9 L@’i’Z’O) =0,7>0 (2—24)
U@,7)=7r ,7>0 (2-25)
U(n,r),%ﬁ?’f)—)O, asn—oand >0 (2-26)

Where the dimensionless mark hat has been omitted for
simplicity.

Now, applying Fourier sine transform [18] to Egs. (2-23)
and taking into account the boundary conditions (2-25) and
(2-26), we find that

ae0r 450 20D opy (2 20 o)
T T

~M(L+ 47D + D) U, (£,7) (2-27)
Where the Fourier sine transformuU_(&,z)ofU (77,t) has to

satisfy the conditions

0U,(£0) _ 0°U,(£0) _

~ =5 =0i ¢>0 (2-28)

U (¢.0) =

26
www.manaraa.com



Chapter two

Let U, (&,s) be the Laplace transform of U_(&,7) defined by

Us(f,s):]zus(g,r) exp(-st)dz , s>0. (2-29)

Taking the Laplace transform of Eq.(2-27), having in mind the initial
conditions (2-28), we get

US(Z”:’S):\/ESZ( §(1+/1§Sﬁ) (2_30)

S+ATS A2 L EL L E PSP A M+ MATS” + MAZ S

In order to obtain U (&,7)=L"{U (&)} with L as the

inverse Laplace transform operator and to avoid the lengthy
procedure of residues and contour integral, we apply the
discrete Laplace transform method. However, for a more
suitable presentation of the final results, we rewrite Eq. (2-24)

in the equivalent form

U (5) = \E EQ+ LS (s+E2)
TV r s (s &)

S+ATS T+ A0SP M+ E2 4 EX QISP M+ MAT ST + MASYs%)

_F E(s+E7) + LS’ (5+ &%)
N\ s%(

S+EXNS+ AL AU 1 E2 1 EP AP 4 M+ MATS® + MAY s*)

2 &+E+ QST+ E AT £ AT £ AP £ M £ AMATS” £ AMAT s

o SP(SHENN(S+HAIS T+ ASSP T + EX + E2ASP + M + MATSY + MAZ )

27

www.manaraa.com



Chapter two

= \/z (E+AS“ M+ 2™+ 2+ E2 A" + M+ MATS® + MASS™) = S2E(As™ 4 Ags™ ™ = AP
T
1
ST (SHEN S+ A+ B + E + E LS + M+ MATS” + MASS™)

+Ms ™ + MA's“? + MA3s** %) x )

_JE 4 E(ATS T+ 258 = P+ Ms T + MATS 2 + MASS™?)
7SHs &) (&N sH A A 4+ & £ 2SN £ M+ MATS” + MASS™)

_\/E s+¢° s E(As ™+ A% = AP+ M+ MAT s + MA; ™) )
T

EA(S+EY) (S+EX)(S+AS  + A8sP M+ EX 4+ E LSS + M+ MASSY + MASS™)

2,1 1 EES T+ 2582 — AP 4 M+ MASS™ T + MASS™ )
&Y &(S+E) (S+HENSHAS T A ST 1 E L S + M+ MATST + MASS™)

_\/7( 1 % E(AS 4+ 2082 = MBS A Ms ™+ MATS 2 + MAZS22)
T & ES(s+E%) (SHE)S+AS T HAISE T+ EE L E LSS A M+ MASS + MASS™)

_\/? 1 s+&-s 1 EALS TP AP Ms T + MAY S E + MASs*?)
&R US(sH+E) E (SHE)(SHAIS T+ AP+ EEH E ST A M+ MAT ST + MASS)

2,1 1 1 1
S

~ EES T+ 8 = AP + Ms 2 + MAS % + MASs*?)
(S+ENS+ATS ™+ As™H + E2+ EP XS + M + MATs” + MAZs™)

) (2-31)
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1
Now, taking the part
JHep (S+ATS ™ + A58 1 E2 4 E2 Q0P + M + MAYs” + MALs™)
_ 1
- 22g2a 2 22845 M s 2
ﬂf(ia+s“+1+27a+%+7§ : +MH+MSO’+ =)
A Al Al A7 A X
And, by using (in(—l)" 2 ) we get
z+a = ak?
1
as2a+l 2 raVrya aa22a
Zf(%+5“+l+%87a+%+%+ﬂé+Ms“+W+s)
A A A A A A
adala+l 2988 ada2a
LSS WS,
/11 m=0 (Sa+1+7(§2+M))m+l
A
] ﬂa32a+1 ZZﬁSﬂ MlaSZa
Now,taklngthepart(i+ 2 +§ 3 Ms® 4 —2— )"
A A A

= (%)(H 2587 + E2 ST+ MAZS T + MAZS )™
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m

And, by using ((@+b)* =Zk: )we get

m=0 m-

S Mg 4052 4 E2 AP L MATSE T 4 MASS2A )
a 2 3 2

-om!
=Y (138% + £7 28"+ MATS T + MAGs™ )

m | 210« f-1-2a aa-a-1
:(i)mz m: (lgSZa)l(l_l_gﬂﬂs +M/115

+Ms™)'
2 Em-1) 2 7

o m! Lo g MATs ™ |
:(i)mz m (ngza)lz (5 3 + 1 +MS—1)]

A i (m=1)! el R Ul ) LR 3

S\ | M VS L
:(_)m ﬂa 211 | + + )J

i i ,Zéj' Wi

é;Z/fifsﬂ—Za N ifs_a_l

TTEYR A )

i H ﬁﬂZa
Myg I Asty SAST,

A = (m-1)! S - s TG -ny A MA; )
Sy M PN I! My Lojl s i it ST
_(ﬂ.f) %‘I'(m—l)!(&zs )JZ(;j'(I—J)!(S);i!(j—i)!( 2 )§d!(i—d)'\ MA; )
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Hence, the Eq. (2-25) can be written under the form of a series
as

5 5 —EATS T+ A3 = AP+ s
Zm: Z I Zjl jt Z it
+MASse? +Ml§sza_z)i(_1) i (m -z jid - J)'.lo if(j —i)le= d!(i - d)'}
e (s+¢ )(S“+1+/11a(§ +M))™
/f{iz(—m+i—d—1) ig(l—i) /Igd M i §2d mls? (2-32)

Inwhich 6 =m+2ad — j —ad + fd — ad.
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Now, applying the inversion formula term by term for the
Laplace transform, Eq.(2-32) yields

U (& 7) = \/?[———(1 exp (—£°7)]

1 !
_15\/72( D" im T Hi TG

Z i(j _,).Z i ;d)l JoCmiidD) el

d=0

M j—d §2d X[ﬂf O_(a+1)m+(2 5)-1 E((Dr!njl) (259 (_%(52 +M )Ga+1)

+/1§ (x+1)m+(2—a—5)-1 E(m) )(_i(gZ + M) Ga+l)

(a+l),(2—a—5 /’Lf
iy 1
. /,i«'g (a+l)m+(2+a—p—-5)-1 E((orln+)l) (e ps) (_E(§2 + M )O_a+1)

_ _ 1
+ M G(a+1)m+(3 S+a)-1 E((;n_.)_l),(3_5+a) (__(52 + M )Ga+l)

A

1
+ M ﬂiozg(a+l)m+(3 o)1 E((;n_zl) (35 (_E(§2 + M )O_a+1)

o a+1)m+(3—a—35)— m 1 a+
+MA; o o e mErama E((a+)1) (B-a—5) (_E(fz +M)oc* )]
*exp(—&°(r —o)ldo (2—-33)

Where "«" represents the convolution of two functions and

=3 A >0, (2—34)
Bl nz-c;F(/ln v

Denotes the generalized Mittag-Leffler function with

kEM(z):i (n+kyrz? (2—35)

E(") z
(2)= S nr(An+ Ak + w)
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Here, we used the following property of the generalized
Mittad-Leffler function[16]
L‘l{L} T ER (Foth) (Re(s)>\c\“). (2—-36)
(s* Fc) ol ’

Finally, inverting (2-33) by the Fourier transform [10]we
find for the velocity U (&,7)the expression

U (7,7) =UN(U’T)‘%Ijsmifn)i(_l)mzm: I1'(m —

IZ ZJ: Jl i II ia(—m—»—i—d—l) ﬂg(l—i) ﬂ':fd M j—d

= J'(|—J)'.ol'(J—l)'d S di(i—d)!

(n+m)!(—jf<§2 £ M)oehy”

2d <[ 1 (a+l)m+(2-5)-1 -
e nz;‘n!F((a+l)n+(a+1)m+(2—5))

(n+ m)!(—jla(gz £ M)oety”

+ ﬂa O_(a+1)m+(2—a—5)—1 OO
2 nz;‘n!F((a+1)n+(a+1)m+(2—a—5)

(n+ m)!(—jg(fz £ M)gety”

+ ﬂﬁo_(a+l)m+(2+a—,8—6)—1i
: (e +Dn+(a+Dm+Q2+a— L —95))

o0

+ M G(a+l)m+(3—5+a)—l
nz;‘ NC((ae+Dn+ (¢ +1)m+ (3—-06 + o))

(n+m)!(—jf<§2 + M)ty

. (n+ m)!(—i(fz + Mgy
= nl'((a+D)n+ (x+1D)m+ (3—-9))

+ M /’l,fl(f(a+l)m+(3_6)_l

(n+ m)!(—ﬂlla(g52 +Mo*h)"

+ M /»ilga(a+l)m+(3—a—5)—1 ]
~nl'((a+D)n+(x+1)m+ (83— a —9))

*exp(—£2(r —o)dodé (2-37)
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Whence,

U, (7,7) =T—ET(1—eXp(—§ZT)SinéS—§n)d§=4Ti2 Erfc( (2-38)
”0

)
247"
Represents the velocity field corresponding to a Newtonian
fluid performing the same motion.

In the above relation i"Erfc(.) are the integrals of the

complementary error function of Gauss.
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(2-3) Results and discussion:

This section displays the graphical illustration velocity field for
the flows analyzed in this investigation. We interpret these results
with respect to the variation of emerging parameters of interest. The
exact analytical solutions for accelerated flows have been obtained
for a Burgers’ fluid and a comparison is mad with the results for those
of the fractional Oldroyd-B fluid.

Fig. (2-1) is prepared to show the effects of non-integer fractional
parameters @ on the velocity field, as well as a comparison between
the fractional Oldroyd-B fluid and fractional Burgers’ fluid for fixed
values of other parameters. As seen from these figures that for time
r=0.5 the smaller the «, the more speedily the velocity decays for
both the fluids. Moreover, for time r =0.5 the velocity profiles for an
Oldroyd-B fluid are greater than those for a Burgers’ fluid. Its also
observed that for time 7 =0.5 the velocity profiles for Burgers’ fluids
approach the velocity profile of the fractional Oldroyd-B fluid and
after some time it will become the same. Thus, it’s obvious that the
relaxation and retardation times and the orders of the fractional
parameters have strong effects on the velocity field.

Fig. (2-2) is prepared to show the effects of non-integer fractional
parameters 4 on the velocity field, as well as a comparison between
the fractional Oldroyd-B fluid and fractional Burgers’ fluid for fixed
values of other parameters. It is observed that for time r=0.5 the

velocity will increase by the decreases in the parameter 3.
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It’s also observed that for time r=0.5 the velocity profiles for
Burgers’ fluids approach the velocity profile of the fractional
Oldroyd-B fluid and after some time it will become the same.

Fig. (2-3) shows the effects of new material parameter on the
velocity field for fixed values of other parameters. It is observed that
for time r=1 the velocity will decrease by the increase in new

material parameter 4,.

Fig. (2-4) shows the variation of time r on the velocity field for
fixed values of other parameters. It’s observed that the velocity will
increase by the increase in time and after some time it will become
the same.

Fig. (2-5) shows the velocity changes with the fractional
parameters and the magnetic field parameter. It is observed that for
a <0.2 the velocity will decrease by the increase in the magnetic field
M. However, one can see that an increase in the magnetic field M for

a <0.6 has quite the opposite effect to that of « <0.2.
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U (77.7)
a=0.1
1.0 a=0.3
| a=0.6
L L L L L L L | L L L L | L L L L |
= 0.5 1. 1.5 2.0 77
I B=,11=2,12=1,
[ 05 F A3=1,M=1,1=0.5
[ 1.0 -
a) Burgers’ model
U (77, 7)
1.0 a=0.1
r a=0.3
[ a=0.6
" \
L L L L L L L L L L L | L L L L |
L 0.5 1.0 1.5 2.0 77
B=0.8,11=2,A2=0,
[ 05 j A3=1,M=1,1=0.5
[ 1.0 =

b) Oldroyd-B fluid

Fig.(2-1): Velocity U(n,r)versus » for different values of « when

other parameters are fixed.
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U (77, 7)
1.0 f—0.3
r B—0.5
B—0.7
0'5 \
I I I I I I I I | I I I I | I I I I |
+ 05 1.0 1.5 2.0 77
[ 05
a=0.1,A1=2,212=1,
A3-=1,M=1,1=0.5
[ 1.0 -

a)Burgers’ model

U (77,7)
1.0 j B—0.3
B—0.5
B—0.7
\ \ ! !
05 1.0 1.5 20 77
[ 05 a=0.1,A1=2,A2=0,
r A3-=1,M=1,7=0.5
[ 10+

b)Oldroyd-B fluid

Fig.(2-2): Velocityu (n,r)versus n for different values of B when

fixed.
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U (77.7) —

10
Fig.(2-3): Velocity U(n,zr)versus n for different values of 1, when

other parameters are fixed.

U (77, 7)

0.
0.
0.
0.

x L I I | I I I | 77
I 0.2 0.4 N&s
0=0.3,p=0.8,A1=2,

A2=1.5,A3=1,M=1

0.5

~N 0w

Fig.(2-4): Velocity U(;,7)versus n for different values of r when

other parameters are fixed.
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U (77, 7)
0.3

0.2

0.1

a—0.2,
a—0.2,
a—0.6,
a—0.6,

M—3
M—5
M—3
M—5

i 0.05 0.10

I B—0.8,A1>2,A2->1,
[ 0.1 B A3—53,10.2
102 ¢
(03"

Fig.(2-5): Velocity U (n,7)versus n for different values of «,M when

other parameters are fixed.
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Chapter three

Chapler Thies

Flow induced by variable accelerating plat¢

Introduction

In this chapter, the flow induced by variable accelerating
plate is considered. It is found that the governing equations are
controlled by many dimensionless numbers. The governing
equation is solved by many Laplace and Fourier techniques. In
the end of this chapter, the velocity field analyzed through
plotting many graphing.

(2.1)Problem statement:

Consideration is given to a conducting fluid permeated by an
imposed magnetic field B which acts in the positive y- direction. In
the low-magnetic Reynolds number approximation, the magnetic
body force is represented byoBZu.Consider an incompressible
fractional Burgers’ fluid lying over an infinitely extended plate which
Is situated in the (x,z) plane. Initially, the fluid is at rest and at time
t=0", the infinite plate to slide in its own plane with a motion of the
variable acceleration A. Owing to the shear, the fluid above the plate
iIs gradually moved. Under these considerations, the governing

equation,
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in the absence of pressure gradient in the flow direction, is given by

2
(L+ 27D + ngfa)aat_“ o+ z,fof)%— ML+ 2D + 2DZ)u
2
Wherev =£ is the kinematics’ viscosity of the fluid and M = 9B.U.
P P

The associated initial and boundary condition are follows:

Initial condition:

u(y,O):%:O, y >0

Boundary conditions:

u(0,t)=Bt*> , t>0

Moreover, the natural conditions are
u(y,t) M —>0 as y—»>oo and t>0
Have to be also satisfied. In order to solve this problem, we

shall use the Fourier sine and Laplace transforms.

(3.1)Solution of problem:
By using the same procedure as in chapter two, the motion

equation can be written as:

(L+ AD¢ + ASDF)S,, = u(l+ 2 Df)%“ (3-1)
2
o [a—”j (3-2)

a a a & a a a au a a
(1+ 4/ D{ +23D{)S,, =25, [ + 43 D; ]a—uzaot S, =—2uA} Y
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And the governing equation, in the absence of pressure gradient in

the flow direction, is given by

2
1+ A°D¢ +ng5“)%” = u(l+ ngtﬂ)Zy—‘j— ML+ A°DE + 42D (3-3.18)

2

Where v =% is the kinematics’ viscosity of the fluid and M = oB. :
p p
The associated initial and boundary condition are follows:
Initial condition:
u(y.0) =200 g, yso (3-4)
ot
Boundary conditions:
u(0,t) =Bt*, t>0 (3-5)
Moreover, the natural conditions are
u(y,t), 8”% )—>0 as y—ow and t>0 (3-6)

Here the governing problem can be normalized using the following

dimensionless

U = gy 1= Ve REE: —t(—)“’ = Blys
A, = A, (E—z)% and 4, = 4, (—)“/5 (3-7)

Egs. (3-3) - (3-6) in dimensionless form are

o°U

YV _as 1D/’
on’

L+ 47D + ;D) —
or

——M(L+ D7 + 22DF)U  (3-8)
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U (1,0) _ &*U(n,0)

U(n,0)= =0, 0 3-9

(17,0) P P > (3-9)

U@©,7)=7> ,t>0 (3-10)

U(U,T),%—)O, asn—oand 7>0 (3-11)
n

Where the dimensionless mark hat has been omitted for
simplicity.

Now, applying Fourier sine transform [18] to Egs. (3-8) and
taking into account the boundary conditions (3-10) and (3-11),
we find that

a0 4250 MED Loy (|2 o200
T T
~ M@+ A°DE + A2D?*)U_ (&, 7) (3-12.27)

Where the Fourier sine transform U (&, 7)ofU (17,1) has to
satisfy the conditions

U (£0) = v ;(5,0) = aZUaST(f 9 _y. £>0. (3-13.28)

Let U,(&s) be the Laplace transform of U_(&,7) defined by

Us(g,s)z]ous(g,r) exp(-st)ydz , s>0. (3—-14.29)

Taking the Laplace transform of Eq.(3-12), having in mind the initial
conditions (3-13), we get

0.(69=" i)

3-15
TS (S+ATS T AISP T L 2+ E2 QST A M+ MASS® + MAZs?) (3-1)
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In order to obtain U (&7)=L"{U (&)} with L'as the inverse
Laplace transform operator and to avoid the lengthy procedure
of residues and contour integral, we apply the discrete Laplace
transform method. However, for a more suitable presentation
of the final results, we rewrite Eq. (3-15) in the equivalent
form

0.(6.9)- ﬁ E(L+ 20" )(s+&2)
TV P s+

SHATS M+ AP EL L E2 ST A M A MAT S + MA ™)

_\/z E(s+E)+ s/ (s+E7)
7SS+ EX)SH+ATST + ALSP 4+ E2 + EPALSS 4 M+ MAYSY + MAS s%)

2 S+E+ QS+ ENSS £ I £ 9257 £ M £ AMATSY £ ML s

N\ SU(SH+ENN S+ ATS T+ LS L EE L E2 ST A M+ MASS® + MAZ )

= \/Z (E(+ A+ LM+ 2+ EM + M + MAS” + MAS™) = S* (A" + Jas™ 7 = s/
VA
1
S(S+E)(S+ A+ ST+ EH EMS + M+ MA'S” + MAIS™)

+Ms™ + MA's™ + MASs* ) x )

_\/E S E(AYs 2 + 258%™ — M7 + Ms™ + MAZs“® + MASs** )
S (s+&%) (S+ENSHAS T+ AT 48+ A + M+ MATST + MASS™)

45
www.manaraa.com



Chapter three

_\F s+&2—s E(AZsU? 4 225272 — 20sP2 L Ms™ + MAYs“™ + MAZs?™) )
T &E(S+E) (SHENSHAS T+ AT+ E2 L EP ST + M+ MAS® + MASS™)
~ \F ( 1 1 E(As“2 + 2052 — A0sP 2 1 M + MAYS ™ + MAZs ™) )
7 & B(s+EY) (SHENSHAS TS 24 ELST A M+ MATSY + MASs™)
_\F( 1 &2 E(A9S 2+ 2052 — 20sP 2 L Ms ™ + MAZs ™ + MAZs ™) )
m&° (s +E%) (sHEP)(sHAS T+ AT+ &7+ L0 AT M A MATS” + MAGS*)

_\F( 1 ( s+&E2-s E(A9s 2 + 295272 — 28sP2 L Ms™ + MAYS ™ + MAZs ™)
m &S ESH(sH+EY) (SHENSHAIS T+ ALSP T 1 EL L E AL M+ MAZS” + MASSH)

_\/Z( 11 1
Nz Es® £3s7 0 E35(s+ £2)

E(AFs 2 + 2282 — A8/ ? + Ms™> + MAZs“ % + MAZs?**7?)
(S+EX)S+ AT ™™ + 228%™ 1 E2 4+ E2X0s” + M + MAZS” + MASs®)

)

_\F 11 %
- ;(533 CE352 Fig(s+&P)

EAFs 2+ A58% 2 — 20”2+ Ms? + MAYs“° + MAZs** %)
_(s+§2)($+ﬂb§"s"‘+1 + AP 1 E2 L E2 ST M+ MAY S + MASs*)

)

46
www.manharaa.com



Chapter three

2 1 1 s+&%2—-s. 1
=\/:( 7~ s T ( 3 ) o5
T &S &°s s(s+<&°) &
B E(ATs 2 + 258272 = 208”2 + Ms ™2 + MAZs“® + MASs** ) )
(S+EX)s+APs* ™ + A9 + E2 + 22087 + M + MAYs” + MAZs*™)

1 1 S+ &2 S 1
=g mat( 2y ) s
r &s® &7s sS(s+<&°) s(s+<&°) &
E(AS P+ A0s% 2 — AP 1+ M+ MATS ™ + MASs* ) )
(S+ENS+ATS ™ + 3™+ E2 4+ E228sP + M + MAZS® + MAZs™)

(3-16)

1
(S+ATS 4 A78% 1 EX +EP A0S + M+ MAT S + MASs™)
1

la52a+1 2 Zﬂﬂsﬂ MlaSZa
A (i+s"‘+1 AL, +§73+M+ Ms® + 2"
A AN A A A

Now, taking the part

)
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k

. 1 © Z
And, by using (——— = —1)* we get
y using (——— é( ) ) We g
1
d 2+l 2 2900 o ~2a
ﬂf(ia+8‘”1+/12$a +§a+§}f{S +|\2+Ms“+w+s)
A e A A A A
o ~2a+l 2908 o ~2a
_ (Sa+/12$a +§/lis +Ms‘)‘+M;L;aS)m
:iZ(_l)m ;11 ;l1 ;"1 ;"1
m=0 (Sa+1+i(§2+M))m+l

A

] ﬂa82a+l Zﬂﬂsﬁ MﬂaSZa
Now,takmgthepart(/lia+ Zﬂa +§ z +Ms® + Za )"

1 1 1 1

= ()4 L2 4 E2 AP MAZ S 4 MASs )T
2 2 3 1 2

1

48
www.manharaa.com



Chapter three

m

And, by using ((@+b)* Zk:

m=0

) we get

() (14 AS5% + E2 257 4 ML + MAZS ™)

l(zgsm +E AP A MAYS T + MAgs P!

1+ 521535—1—20( . Mﬂfs_a_l

+Ms™)!
2 E1im-1)! P 2

It ST Mg

+Ms™)!
A Ay

E s pese
+ +

S\nxr Ml cayive 1My i
G L S e )
_(i)mi ml (laSZa)IIZ II (MI j Jl gzﬂ’i[;sﬁiza +A’?S_a_1)i
T ENm-nrT T -t st G-t Ma 2
_(i)mi m! (laSZa)|IZ II (M | j JI A‘fs_a)i(l_l_gzj’fsﬁza)i
T Shm-T A= s Zig-ir A MA?
_(i)mi m! (laSZQ)IIZ ! (M)l j I lll B |IZ ! é: Agsﬂ_za)d
T Enm-nrT & -y s ol'(J iy e Sdii-d) M
49

www.manaraa.com



Chapter three

Hence, the EQ.(3-16) can be written under the form of a series
as

+1§ )é:_] —5(2.?3“ 2 +la 2a-2 iﬂ p-2 +MS—3
[ i il

.le(m 1 10— J)'Zl'(J —u)'zd'(u ' N

i=0 d=0

FMAES T 4 MALs )Y (<) :
(s e €M)

ﬂjtit(—mﬂ—d—l) l;t(l—i) ifd M j—d §2d m|35 (3_17)

Inwhich 6 =m+2a — j—ai + fd — ad.
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Now, applying the inversion formula term by term for the

Laplace transform, Eq.(3-17) yields

U,(&.7) = [?—5— & @-ep(-£0)]
Co2E . a1 &
Jef3en 25 Tim — 112 10— !

0
Zj: J! ZI: i! /'sz(ferifdfl) a0 4pd
o I1(J—DIgdI(i—d)! ? :

i 1
M j—d §2d < [/fljo-z O_(o¢+l)m+(3—§)—1 E((Orizl) @) (_ﬁ (52 +M )O_a+1)
+/12 (a+l)m+(3—a—5)-1 E(m) i(éZ +M ) O_a+1)

(a+1),(3—a—05) (_ /’Lil

_ 1
_ ﬂlg () m+(3+a—p-5)-1 E((;]le) Graps) (_?(52 + M )Ga+l)

M glenmasa g (—g(f +M)oc*™)

(a+

a a+l)m+(4-5)- m 1 o+
+ M/’ll G( 1)m+(4-5)-1 E( )1)(4—5)(_E(§2 + M)G 1)

(a+

a a+l)m+(4—a— m 1 ot
+M/12 (e+l)m+(4—a-5)-1 E( )1)(4—a—5)(_f(§2 +M)O' 1)]

*exp(—&°(r —o)ldo (3-18)

Where "«" represents the convolution of two functions and

E,.(2)= ;F(MH L A, >0, (3-19)

Denotes the generalized Mittag-Leffler function with

0 dk R (n+k)!z" B
o (Z)_ A’”(Z)_nzzo“n!l“(ﬂnﬁL/lkij)' (3-20)
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Here, we used the following property of the generalized
Mittad-Leffler function[16]

L, Kis® N
- 1{(51 +c)k+1} e tEW (Foth), (Re(s)=|d). (3-21)

Finally, inverting (3-18) by the Fourier transform [18] we
find for the velocity U (&,7) the expression

U(7,7)=U, (7.7) - HS'”@”)X 1>mi,.(m_.)|

IZ : I! : i -j! : 2 II /’La( m+i—d-1) ﬂf;(l i) /’igﬂd M j—d

i J1( = DY) - Dz di(i —d)!

o+ m)!(—j;,(gz M)y

2d < o (a+1)m+(3-5)—1
o xlAe nz_:jn!l“((a DN+ (@ +Dm+ (3—0))

O (nem)( R (& M)oey
+Za G(a+l)m+(3—a—5)—lz /’i’l
? ~“nl'((c+Dn+ (e +1D)m+ B —a — )

) (n+ m)!(—jf(sz + M)oy

_|_/1é30(a+1)m+(3+a—/3—5)—lz
S nNl'((a+D)n+(ax+1)m+ B+ a — —9))

_ (n+m)!(—i0[(~»§2+M)o-0‘*1)n
+M O_(a+l)m+(4—6+a)—lz ;li
S nNl'((a+Dn+(x+1)m+(4— 05 + x))

L (hem)(= (& MYy
M //llao_(a+1)m+(4—5)—1 A

= nNT'((ad+D)n+(ax+1)m+ (4 —95))

o0

+ M /Ia (a+l)m+(4—a—35) 12 I ]
S nNT'((da+Dn+(x+1)m+ (4 —a —5))

*xexp(—&2(r —o)dodé& (3—-22)

(n+ m)!(—ﬂlf((g2 + Moy
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Whence,

Sin(fﬂ)d§=3212i4Erfc( (3-23)

, Acfsin(gy) ., A7 ) 7
Uy(7)=¢ 7’ - d§+;£(1—exp(—§ 2 N

0
Represents the velocity field corresponding to a Newtonian
fluid performing the same motion.
In the above relation i"Erfc() are the integrals of the

complementary error function of Gauss.
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(3-3)Results and discussion:

This section displays the graphical illustration velocity field for
the flows analyzed in this investigation. We interpret these results
with respect to the variation of emerging parameters of interest. The
exact analytical solutions for accelerated flows have been obtained
for a Burgers’ fluid and a comparison is mad with the results for those
of the fractional Oldroyd-B fluid.

Fig. (3-1) is prepared to show the effects of non-integer fractional
parameters « on the velocity field, as well as a comparison between
the fractional Oldroyd-B fluid and fractional Burgers’ fluid for fixed
values of other parameters. . It is observed that for time =05 the
velocity will increase by the increase in the parameter«. Moreover,
for time =05 the velocity profiles for an Oldroyd-B fluid are
greater than those for a Burgers’ fluid. Its also observed that for time
r=0.5 the velocity profiles for Burgers’ fluids approach the velocity
profile of the fractional Oldroyd-B fluid and after some time it will
become the same. Thus, it’s obvious that the relaxation and
retardation times and the orders of the fractional parameters have
strong effects on the velocity field.

Fig. (3-2) is prepared to show the effects of non-integer fractional

parameters 4 on the velocity field, as well as a comparison between
the fractional Oldroyd-B fluid and fractional Burgers’ fluid for fixed
values of other parameters. It is observed that for time r=0.5 the
velocity will increase by the increase in the parameter 3. Moreover,
for time =05 the velocity profiles for an Oldroyd-B fluid are

greater than those for a Burgers’ fluid.
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Fig. (3-3) shows the effects of new material parameter on the
velocity field for fixed values of other parameters. It is observed that
for time r=1 the velocity will decrease by the increase in new

material parameter 4, .

Fig. (3-4) shows the variation of time r on the velocity field for
fixed values of other parameters. It’s observed that the velocity will
increase by the increase in time and after some time it will become
the same.

Fig. (3-5) shows the velocity changes with the fractional
parameters and the magnetic field parameter. It is observed that for
a <0.2 the velocity will decrease by the increase in the magnetic field
M. However, one can see that an increase in the magnetic field M for

a <0.6 has same effect to that of « <0.2.
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U (77.7)
04
a=0.3
- o0=0.5
a=0.7
I I I I | I I I I | I I I I |
0.0 0.10 0.15 0.20 77
B=0.8,11=2,%2=1,
202 7 a3=1,mM=1,1=0.5
.04
a) Burgers’ model
U (77, 7)
0.4 ; a=0.3
F - a=0.5
T a=0.7
0.2
I | ! I I | I I I I | I I I I |
0.05 0.10 0.15 0.20 77

B=0.8,11=2,12=0,
A3=1,M=1,7=0.5

.04 ;
b) Oldroyd-B fluid

Fig.(3-1): Velocityu (n,z)versus n for different values of « when

other parameters are fixed.
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U (77.7)

04 - f—0.6
| B—0.8
i B—0.9
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| | | | | | | | |
0.02 0.04 Ns 7

a=0.5,11=2,A2=1,
A3-=1,M=1,1=0.5

- 0.2

- 04

a)Burgers’ model

U (77.7)
: B—0.6
04 - B—0.8
r B—0.9

0.2

002 o004 Ns n

a=0.5,11=2,A2=0,
A3-=1,M=1,1=0.5

. 0.2

- 04

b)Oldroyd-B fluid

Fig.(3-2): Velocityu (n,z)versus n for different values of B when

other parameters are fixed.
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U (77, 7) ;2_)2

2—

1.0 j r2—7
05+

0=0.4,=0.6,A1=5,
23=0.5,M=1,1=0.5

Fig.(3-3): Velocityu (n,r)versus 5 for different values of 1, when

other parameters are fixed.
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U (77, 7)
03
L =>0.1
7=>0.3
; T 1>0.5
\ | | | | | | | | | |
i 0.1 0.2 03 04 05 77

a=0.3,B=0.8,A1=2,
A2=1.5,A3=1,M=1

Fig.(3-4): Velocityu(n,z)versus n for different values of  when

other parameters are fixed.
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U (77, 7)
10
| a—>0.2, M—>3
a—>0.2, M5
L a—>0.6, M3
L a—0.6, M—>5
05 -
| | | | | | | | | |
- 0.01
05
| f—0.8,A1>2,A2->1,
A3—>3,1>0.5

210 -

Fig.(3-5): Velocity U (n,7)versus n for different values of «,M when

other parameters are fixed.
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Further Work

In what follow we give some suggestions for further

work:
1- We solve the problem in two dimensions; one can
resolve it in three dimensions.
2- We study the effect of MHD on the velocity field; one
can study the effect of MHD on the Shear stress and

Shear strain.
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